innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Synthetically-generated Privacy-preserving Data for Machine Learning
Artificial Intelligence/Machine Learning (AI/ML) performance is predicated on training with good quality data. However, such data is often difficult to acquire due to ethical concerns, logistic problems, high cost, data bias, and inherent poor data quality. Privacy restrictions and data regulations further compound the problem of data acquisition, restricting many organisations long-term access to valuable historical data. Ultimately, this creates the problem of incomplete or biased data which degrade the overall performance of trained AI/ML models.   This technology offer is a controlled synthetic data generation with differential privacy capability for structured (tabular) data. Its synthetic data engine utilizes conditional GANs (cGANs) coupled with optional differential privacy to synthesize data with similar properties as real data without the associated privacy risks.
Lixiviant for High Efficiency Extraction of Palladium (Pd) from Electronic Waste
The exponential growth of electronic waste (E-waste) generation is proliferating due to the ever-increasing demand for electrical and electronic equipment (EEE) driven by industrial revolution and development. The COVID-19 crisis has further accelerated the shift towards digital transformation, contributing to an upsurge in E-waste generation. To-date, the industrial practices of extracting palladium (Pd) from electronic waste and mining ores rely on hydrometallurgy techniques using highly corrosive acids, typically aqua regia at elevated temperature. The process poses severe hazards to workers and lead to environmental pollution. Aqua regia’s capability to dissolve many various metals results in low selectivity for Pd. Despite ongoing efforts to develop alternative methods, these methods often prove impractical for industrial adoption. The technology provider has developed a proprietary lixiviant capable of extracting palladium up to 4,000 ppm at saturation with high extraction efficiency and selectivity within 12 hours. This lixiviant is facile, cost-effective, and significantly less corrosive and hazardous compared to current industrial practices. Substituting fuming aqua regia with this lixiviant could enhance the protection of workers and environmental safety. Importantly, the proposed technology is highly compatible with existing hydrometallurgy processes, eliminating the need for companies to change their current infrastructure. An E-waste industry partner has successfully conducted a pilot-scale (5-Litre scale) evaluation, validating the effectiveness and applicability of the lixiviant on their Pd-coated samples. The technology provider is actively seeking industry partners interested in test-bedding and licensing of this technology.
Remotely Operated Vehicle for Inspection and Maintenance of Underwater Structures
The current oil and gas market situation and the growing demand for clean energy are driving companies to develop offshore infrastructures for oil and gas extraction and wind farms. Maintenance of underwater structures must be carried out by Remotely Operated Vehicles (ROVs), which can operate 24 hours a day, 7 days a week. However, the daily costs of such operations are high, and companies are looking for innovative solutions to reduce operation time and save costs. Currently, there are two types of ROVs in use: work-class and inspection ROVs. Work-class ROVs are large and heavy, weighing up to 8 tons, and are capable of performing a variety of tasks. They require vessels and cranes for transportation and deployment and can operate at depths of up to 8000m. They are equipped with specialized tools such as dredgers, robotic arms, LIDARs, and other vision-enhancing electronics. On the other hand, inspection ROVs are small and light, weighing up to 100kg, but have limited capabilities. They can only stream video and perform basic inspections, typically carrying only a camera and sonar. They are usually used at depths of up to 300m. A startup based in Poland has introduced a new class of ROV that combines the lightness of inspection ROVs with the capabilities of work-class ROVs. The ROV’s patented variable buoyancy hull technology gives it capabilities similar to those of a work-class ROV but with a smaller footprint. It can submerge without using vertical thrusters, making it very energy-efficient and reducing its carbon footprint. The unique variable buoyancy hull approach allows for precise control and intuitive operation, even in the presence of external factors such as sea currents. This technology is particularly useful for subsea missions close to the seabed, as the variable geometry hulls do not disturb sand and dust particles, allowing for better situational awareness for the operator. This innovative ROV can change their buoyancy to lift more (up to 1:1 payload-to-weight ratio), enabling it to carry various tools and equipment. The ML/AI-based control system automatically changes the buoyancy of the individual hulls, making it intuitive and easy for pilots to control and flattening the learning curve. The technology owner is seeking partnerships with the maritime, defense and other industries in the Southeast Asia region to testbed and tailor the ROV to meet specific application requirements.
Cost-Effective Protective Coating Enhancing Durability of Electrode Catalyst
Electrolysis has diverse applications across various sectors, such as household and industrial electrolyzed water treatment, soda electrolysis, electrolytic plating, electrodeposition, and hydrogen generation. In electrolysis using insoluble electrodes, the electrocatalyst acting as the reaction field for the electrode reaction undergoes gradual abrasion. Given the high cost of precious metals (i.e., platinum group compounds) used as catalysts, protecting the catalyst and reducing the wear rate are crucial for extending the lifetime of electrodes and reducing the maintenance cost. Current technologies include multilayer electrodes that have a surface layer of noble metal oxide on the electrocatalyst to reduce catalyst wear. However, this method proves more expensive than ordinary insoluble electrodes. Additionally, the surface layer cannot be recoated. To address the challenge, the technology owner has developed a proprietary protective coating that effectively protects the catalyst on the surface of existing insoluble electrodes. This solution enables effective electrode protection through an inexpensive coating, reducing catalyst consumption and electrode replacement frequency. The coating can be reused by recoating the electrode, also contributing to the perspective of “Circular Economy”. The technology owner is seeking R&D collaboration with industrial partners such as electrode manufacturers, coating manufacturers, and companies utilising insoluble electrodes in electrolysis, especially electrolytic plating and metal recovery. 
DNA Test Kit for On-site Diagnostics of Tropical Crop Diseases
Fast crop disease management is important to ensure sustainable production. Many tropical crops suffer from infectious diseases that spread and kill plantations. Previously, new land had to be allocated to replant crops in disease-free areas. This is now more challenging because land conversion implies deforestation. Thus, one way to improve the metrics of both production and sustainability is by testing for infection before moving the non-infectious material (i.e. in nurseries). However, as PCR testing in tropical countries is more challenging due to logistics and other factors, testing on-site would be a preferred option. This technology is a unique, portable, self-administered DNA detection kit to be used directly on-site to test for the DNA of the pathogen (virus, fungus etc.). Developed in Switzerland, the technology has already shown one use case for cocoa testing in West Africa and is shipped in the country without a cold chain.
Vanadium Redox Flow Battery for Enhanced Energy Storage Solution
Today, the cost of energy generated by renewable sources is less than conventional energy. However, current energy storage solutions (e.g. Lithium-ion battery etc.) used to harness energy from renewables are expensive, unsafe and unreliable which has severely impeded the adoption and development of such renewable sources. Hence, there is a need for a cost efficient, safe, environmentally friendly and reliable energy storage system (ESS) to address these existing issues. This technology offer is a vanadium redox flow battery (VRFB) as a promising ESS. Unlike lithium-ion and lead acid batteries, VRFB has the flexibility to design and customise its power and energy density independently. This results in enhanced performance in terms of round-trip efficiency, energy density and thermal window as well as lowered levelised cost of storage when benchmarket against lithium-ion battery based ESS for long discharge duration. The VRFB also uses a unique stack design and an organic additive mixture on the electrolyte that improves the thermal stability and allows for 25% increase in energy efficiency when compared to other VRFB solutions.It also reduces safety risks related to over-charging, discharging and thermal runaways. This VRFB ESS is stable for up to 25 years with no electrolyte degradation and is made with environemtally friendly materials. The technology owner is seeking partner and collaborators especially those in renewable energy, large scale utility and microgrid projects to test bed their technology.
Generative AI Technology for Business Process Automation and Customer Engagement Improvement
Enterprises are constantly looking for ways to improve operational efficiency and reduce costs. Traditional automation has limitations, especially when it comes to tasks requiring creativity or complex decision-making. Generative AI has emerged as a transformative technology that addresses a variety of pain-points faced by enterprises across industries. This technology solution offers a seamless integration of large language models (LLMs) and Generative AI fuctions with existing infrastructure, enhancing AI's impact by automating the flow of information and standardizing AI usage within your enterprise. This empowers customer support and operations teams to provide quick and accurate responses, significantly improving service delivery and operational efficiency.    
Effective and Versatile Deodorant Solution for Odor Removal
Issues associated with odor generation present significant challenges in various aspects of daily life, encompassing unpleasant smells from various sources such as toilets, kitchens, pets, tobacco, hospitals, and transportation. These unwanted odors have a detrimental impact on individual well-being, social interactions, and overall environmental quality. Deodorants play a crucial role in addressing these challenges, fostering a more comfortable and hygiene environment. However, conventional deodorants primarily rely on masking the unwanted odors with a strong fragrance, resulting in a slow and ineffective deodorization process, particularly against strong smells. The technology owner has developed a proprietary formulation that offers an effective deodorization approach. Unlike common deodorants, the unique deodorant using the proprietary formulation can remove the sources of unpleasant smells through chemical reactions. It demonstrates remarkable efficiency against a broad spectrum of odors, including those from rotting fish and meat, rotting eggs and milk, rotting vegetable waste, ammonia in toilets, sweat, and body odor. This innovative solution has the potential to revolutionise odor control across diverse scenarios. The technology owner is seeking R&D collaboration with industrial partners who are interested in incorporating this deodorant into their products and applications.
Tactile and Temperature Sensing Electronic Skin for Healthcare and Cosmetic Applications
The human skin is the largest organ of the body, capable of extremely sensitive sensing ability and functional characteristics including elasticity, mechanical resistance and self-healing due to different mechano-receptors and sensory nerves. Electronic skin (e-skin) or synthetic skin, is a thin electronic material that stimulate the characteristics of the skin, making it possible for applications in prosthetics, robotics, wearables devices and percutaneous drug delivery systems. This patented technology is an e-skin with tactile, pain and temperature sensing, capable of differentiating various mechanical forces, sensory heat or moisture concurrently. It is a promising technology for healthcare applications. Currently, majority of the sensors in the market for healthcare are in rigid forms and for small application areas, which make it difficult for portable and wearable applications in large surface areas. This thin film flexible electronic skin can detect applied pressure and temperature on it. The skin’s electrical resistance varies with applied pressure and temperature. By measuring the skin’s electrical resistance, the applied pressure and temperature can be derived. The skin can be made stretchable to be covered on irregular curved surfaces. These features complement the drawbacks of rigid sensors for healthcare applications. The technology owner is looking for collaborators in the medical and robotics sectors and potential opportunities outside of healthcare such as beauty and cosmetics.